Modeling the Long-Term Deformation of a Geodesic Spherical Frame Structure Made from Wood Plastic Composite Lumber
Published: 2020
Publication Name: Applied Sciences
Publication URL: https://www.mdpi.com/2076-3417/10/14/5017
Abstract:
The long-term deformation of a geodesic spherical frame structure with a diameter of 20 m made from wood plastic composite (WPC) lumber (struts) is described using the Norton-Bailey power law model to predict the service life creep behavior (the creep strain (??????
)) of the WPC. The Norton-Bailey power law model parameters, A the power law multiplier, n the stress order, and m the time order, were obtained from experimental four-point bending flexural creep measurements of WPC lumber subjected to three levels of flexural stress: 7, 14, and 29% of the ultimate flexural strength for 200 days. The parameters obtained from the experiments showed good agreement to the model of the WPC lumber in flexure. The Norton-Bailey power law parameters were then implemented to describe the long-term deformation of the spherical frame structure. The limit of failure was considered when the WPC creep strain reaches the value of 1%. However, the FEA predicted the maximum creep strain to be 20% of the failure strain. This modeling approach is considered useful to describe and predict the long-term deformation of aquacultural structures made from viscoelastic materials during the envisioned service life (10 years) based on experimental creep data for the members that form the structure.