

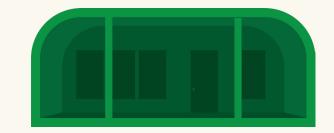
# **BIDHOME3D** The first 3D-printed house made entirely with forest-

derived, durable and economical materials










#### TACKLING OUR HOUSING SHORTAGE

**80,000 affordable housing units are needed in Maine.** BioHome3D technology tackles labor shortages and supply chain issues that inflate housing costs by using automated, off-site manufacturing to reduce on-site building time and construction waste.

#### STRENGTHENING OUR FOREST PRODUCTS INDUSTRY

Using resource-efficient, locally sourced wood fiber feedstock, BioHome3D reduces reliance on a limited supply chain. The 600-square-foot prototype includes 3D-printed floors, walls, and roof made from wood fibers and agri-basedresins.Fullyreclaimable, it features high insulation with 100% wood-based materials.





### - LOCAL SOLUTIONS

Developed by the University of Maine's Advanced Structures & Composites Center (ASCC), a leader in large-scale additive manufacturing, and in collaboration with Oak Ridge National Laboratory through the Hub & Spoke Specialized Materials & Manufacturing Alliance for Resilient Technologies (SM<sup>2</sup>ART), BioHome3D is a transformative solution to critical housing challenges.

This technology not only reduces reliance on traditional labor-intensive construction methods and constrained supply chains but also offers a pathway to rapid and scalable housing production. The 600-square-foot prototype demonstrates the potential for efficient, rapid production of entire homes—floors, walls, and roof—while also supporting Maine's forest products industry.









## **Advanced Structures & Composites Center**



composites.umaine.edu 35 Flagstaff Rd, Orono, ME, 04469 maine.edu

The University of Maine is an equal opportunity/affirmative action institution.