Adhesives

ASTM D905	Strength Properties of Adhesive Bonds in Shear by Compression Loading
ASTM D1101	Integrity of Adhesive Joints in Laminated
	Wood Products for Exterior Use
ASTM D2339	Strength Properties of Adhesives in Two-Ply Wood Construction in Shear
ASTM D2559	Standard Specification for Adhesives for
	Structural Laminated Wood Products
ASTM D3165	Lap Shear Strength Properties of Adhesives

ASTM D5868 Lap Shear Adhesion for Fiber Reinforced (FRP) Plastic Bonding

Composite Materials

ASTM C393	Flexural Properties of Sandwich Constructions
ASTM D2344	Short-beam Strength of Polymer Matrix
	Composite Materials and Their Laminates
ASTM D2584	Ignition Loss of Cured Reinforced Resins
ASTM D3039	Tensile Properties of Polymer Matrix
	Composite Materials
ASTM D3410	Compressive Properties of Composite Materials by Shear Loading
ASTM D3479	Tension-Tension Fatigue of Polymer Matrix
	Composite Materials
ASTM D3518	In-Plane Shear of Composite Materials by
	Tensile Test of a \pm 450 Laminate
ASTM D4255	Standard Guide for Testing In-plane Shear
	Properties of Composite Laminates
ASTM D5379	Shear Properties of Composite Materials by
	the V-Notched Beam Method
ASTM D5528	Mode I Interlaminar Fracture Toughness of
	Unidirectional Composites
ASTM D5766	Open Hole Tensile Strength of Polymer Matrix
	Composite Laminates
ASTM D6115	Mode I Fatigue Delamination Growth Onset of
	Unidirectional Composites
ASTM D6641	Compressive Properties of Composite
	Laminates
ASTM F1679	Using a Variable Incidence Tribometer (VIT)
Destance	-

Fasteners

ASTM D1761 Standard Test Methods for Mechanical Fasteners in Wood

Plastic Materials

ASTM D256	Determining the Izod Pendulum Impact	
Resistance of Plastics		
ASTM D635	Rate of Burning of Plastics in a Horizontal	
Position		
ASTM D638	Tensile Properties of Plastics	
ASTM D695	Compressive Properties of Rigid Plastics	
ASTM D696	Coefficient of Linear Thermal Expansion	
ASTM D790	Flexural Properties of Plastics	
ASTM D792	Density and Specific Gravity of Plastics by	
	Displacement	
ASTM D953	Bearing Strength of Plastics	
ASTM D2765	Determination of Gel Content and Swell Ratio	
	of Crosslinked Ethylene Plastics	

ASTM D3846	In-Plane Shear Strength of Reinforced Plastics
ASTM D4065	Dynamic Mechanical Properties
ASTM D4812	Unnotched Cantilever Beam Impact Strength of Plastics
ASTM D6109	Flexural Properties of Unreinforced and
	Reinforced Plastic Lumber
ASTM D6110	Determining the Charpy Impact Resistance of Notched Specimens of Plastics

Structural

ASTM C273	Shear Properties of Sandwich Core Materials
ASTM D7032	Performance Ratings for Wood-Plastic
	Composite Deck Boards and Guardrail Systems
ASTM E72	(Sec. 11 only) Conducting Strength Tests of
	Panels for Building Construction
ASTM E564	Static Load Test for Shear Resistance of
	Framed Walls for Buildings
ASTM E2126	Cyclic (Reversed) Load Test for Shear
	Resistance of Vertical Elements of the Lateral
	Force Resisting Systems for Buildings

Wood Products

ASTM D198	Static Tests of Lumber in Structural Sizes
ASTM D143	Testing Small Clear Specimens of Timber
ASTM D245	Structural Grades and Related Allowable
	Properties for Visually Graded Lumber
ASTM D1037	Evaluating Properties of Wood-Base Fiber and
	Particle Panel Materials
ASTM D2395	Specific Gravity of Wood and Wood-Based
	Materials
ASTM D2555	Establishing Clear Wood Strength Values
ASTM D3737	Establishing Allowable Properties for
	Structural Glued Laminated Timber (Glulam)
ASTM D4442	Direct Moisture Content Measurement of
	Wood and Wood-Base Material
ASTM D4761	Mechanical Properties of Lumber and Wood-
	Base Structural Material
ASTM D4933	Moisture Conditioning of Wood and Wood-
	Base Materials
ASTM D5456	Evaluation of Structural Composite Lumber
	Products
ASTM D6815	Duration of Load and Creep Effects of Wood
	and Wood-Based Products

For more information, contact:

John Arimond, Business Development Manager Advanced Structures and Composites Center composites.umaine.edu (207) 581-2336 john.arimond@maine.edu

Education, Research, and Economic Development

The University of Maine's Advanced Structures and Composites Center's award winning research staff help clients create innovations from concept through design, modeling, prototyping, testing, and code reports. The 100,000 ft², ISO 17025-accredited laboratory employs more than 260 people with expertise in multi-scale materials and structures design and evaluation, composite materials analysis and manufacturing, finite element analysis and multiphysics modeling techniques. We have a successful history of partnering with industry and government, with more than 500 product development and testing projects completed to date.

Our Mission

The University of Maine's Advanced Structures and Composites Center is a world-leading, interdisciplinary center for research, education, and economic development encompassing material sciences, manufacturing, and engineering of composites and structures.

UMaine's Advanced Structures and Composites Center ISO 17025-accredited testing laboratory in Orono, Maine.

13 Integrated Laboratories

Alfond Advanced Manufacturing Lab for Structural Thermoplastics
Alfond W² Ocean Engineering Lab
Offshore Wind Lab
Structural Testing Lab
Environmental Testing Lab
Kenway Composite Materials Lab
Materials Characterization Lab
Materials Manufacturing Science Lab
Mechanical Testing Lab
Nanocomposites Processing and Analytical Lab
Polymer and Interface Science Lab
Wood Composites Pilot Line
Thermoplastic Composite Extrusion Lab

Design & Simulation Capabilities

- Finite element analysis in ANSYS or ABAOUS
- Nonlinear material modeling including impact and fatigue
- Multiphysics simulation in LS-DYNA
- Application-specific analysis software creation
- Finite-element software development
- Fluid-structure analysis in WAMIT or ANSYS Aqwa
- Coupled floating wind turbine analysis in FAST

Manufacturing Capabilities

- World's largest thermoplastic 3D printer (60' long, expandable to 100', 22' wide, 10' tall
- Structural thermoforming
- Thermoplastic vacuum consolidation
- Vacuum assisted resin transfer molding
- Wood-plastic extrusion
- Filament winding
- Compression molding
- Property enhancement using nanomaterials
- Low-logistics concrete formwork
- Hybrid concrete/composite structures

Structural Testing Capabilities

- Total reaction floor space 845 $m^{\rm 2}$
- Test structures up to 70 m long
- Reaction wall static capacity > 30,000 kN·m
- Reaction wall fatigue capacity > 20,000 kN·m
- Large and small scale fatigue testing
- Offshore model testing
- 10 servohydraulic actuators; 100 to 1,300 kN
- Six winch frames with 130 kN static capacity
- Two MTS inertial resonance excitation systems
- Complete fixturing & instrumentation services
- Extensive digital image correlation capabilities

Testing Equipment

The UMaine Composites Center is an ISO 17025 accredited testing laboratory with nearly 20 years of testing experience meeting industry standards from coupon-scale to full-scale. We have a successful history of partnering with industry and government, with over 500 product development and testing projects completed to date. Our facility includes fully equipped, integrated laboratories to develop and test durable, lightweight, corrosion-resistant material solutions for a wide variety of industries including, among many, offshore wind energy, civil infrastructure, and electrical utilities.

IEC 61400-23 Wind Blade Testing

- Static proof loads to > 30,000 kN·m
- Fatigue loads to > 20,000 kN·m
- Natural frequency and damping measurements
- Blade rotation system with >150 kN·m brake system
- Digital image correlation to characterize surface buckling
- Rolling ultrasonic probe to inspect adhesive joints
- Root stud pull-out testing

Offshore Wind Laboratory reaction wall

Structural Testing Equipment

845 m² available reaction floor space Servohydraulic static and dynamic tests

- MTS and Instron systems
- Structural test frames (vertical reaction)
 - \bullet 3 x 1300 kN capacity
- $1 \ge 450$ kN capacity
- 1 x 220 kN capacity
- Structural test walls
- 1 x 3200 kN·m capacity
- 1 x >30,000 kN·m capacity
- Winch frames
- 6 x 130 kN capacity
- Servohydraulic actuators
- 2 x 1300 kN (2000 kN in compression)
- 3 x 450 kN
- 3 x 250 kN
- 2 x 100 kN, 1 high-speed (1.2 m/s)

Hydraulic power stations

- 280 kW in Offshore Wind Laboratory
- 170 kW in Structural Testing Laboratory

Noncontact Displacements and Strains

- GOM ARAMIS optical 3D deformation analysis
- Displacement resolution 0.1 mm over large surfaces
- Strain distributions around joints
- 4 sets of cameras

IEC 61400-23 Wind Blade Testing in our Offshore Wind Laboratory

Material Coupon testing Equipment

Servohydraulic tension-compression test frames

- $1 \ge 500$ kN capacity
- 3 x 100 kN capacity
- 1 x 20 kN capacity
- Servohydraulic axial / torsional test frames
- + 1 x 100 kN / 1100 N·m capacity
- 1 x 25 kN / 100 N·m capacity

Drop weight impact testing 1.5 - 1250 J

Non-destructive testing

- Phased-array ultrasonic inspection
- Acoustic emission testing
- Embedded fiber optic strain sensing

Microscopy

- Optical microscopy
- Scanning electron microscopy (SEM)
- Environmental SEM
- Transmission electron microscopy
- Atomic force microscopy (AFM)
- Microtomography
- Laser scanning confocal microscopy

Material and Substructure testing

- Plastic, adhesive, composite, and fabric property testing
- Multiaxial strength and stiffness
- Fatigue, creep & impact testing
- Multi-scale tests from constituents to structures

Environmental test chamber

300 m³ chamber (6.8 m x 6.8 m x 6.1 m high) Door opening 4.3 m x 4.25 m high Temperature range -40 to +50°C

• Uniformity ± 3.0 °C, constancy ± 0.2 °C Relative humidity range 20 to 95%

• Uniformity $\pm 5\%$, constancy $\pm 2.5\%$ Ramp rate in thermal cycling $\pm 10^{\circ}$ C per hour Conduct fatigue tests within chamber

300 m³ Three-story tall environmental test chamber

Coupon testing in the Mechanical Testing Lab

Nanomaterial development

Panorama of Structural Testing Laboratory